Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stress ; 25(1): 145-155, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35384793

RESUMO

Worldwide, millions of people suffer from treatment-resistant depression. Ketamine, a glutamatergic receptor antagonist, can have a rapid antidepressant effect even in treatment-resistant patients. A proposed mechanism for the antidepressant effect of ketamine is the reduction of neuroinflammation. To further explore this hypothesis, we investigated whether a single dose of ketamine can modulate protracted neuroinflammation in a repeated social defeat (RSD) stress rat model, which resembles features of depression. To this end, male animals exposed to RSD were injected with ketamine (20 mg/kg) or vehicle. A combination of behavioral analyses and PET scans of the inflammatory marker TSPO in the brain were performed. Rats submitted to RSD showed anhedonia-like behavior in the sucrose preference test, decreased weight gain, and increased TSPO levels in the insular and entorhinal cortices, as observed by [11C]-PK11195 PET. Whole brain TSPO levels correlated with corticosterone levels in several brain regions of RSD exposed animals, but not in controls. Ketamine injection 1 day after RSD disrupted the correlation between TSPO levels and serum corticosterone levels, but had no effect on depressive-like symptoms, weight gain or the protracted RSD-induced increase in TSPO expression in male rats. These results suggest that ketamine does not exert its effect on the hypothalamic-pituitary-adrenal axis by modulation of neuroinflammation.


Assuntos
Anedonia , Ketamina , Doenças Neuroinflamatórias , Animais , Antidepressivos/farmacologia , Proteínas de Transporte , Corticosterona , Depressão/metabolismo , Depressão/prevenção & controle , Modelos Animais de Doenças , Sistema Hipotálamo-Hipofisário/metabolismo , Ketamina/farmacologia , Masculino , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Receptores de GABA/metabolismo , Receptores de GABA-A , Estresse Psicológico/metabolismo , Aumento de Peso
2.
Mol Imaging Biol ; 22(4): 931-939, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31907846

RESUMO

PURPOSE: [18F]Fluoroethoxybenzovesamicol ([18F]FEOBV) is a radioligand for the vesicular acetylcholine transporter (VAChT), a marker of the cholinergic system. We evaluated the quantification of [18F]FEOBV in rats in control conditions and after partial saturation of VAChT using plasma and reference tissue input models and test-retest reliability. PROCEDURE: Ninety-minute dynamic [18F]FEOBV PET scans with arterial blood sampling were performed in control rats and rats pretreated with 10 µg/kg FEOBV. Kinetic analyses were performed using one- (1TCM) and two-tissue compartmental models (2TCM), Logan and Patlak graphical analyses with metabolite-corrected plasma input, reference tissue Patlak with cerebellum as reference tissue, standard uptake value (SUV) and SUV ratio (SUVR) using 60- or 90-min acquisition. To assess test-retest reliability, two dynamic [18F]FEOBV scans were performed 1 week apart. RESULTS: The 1TCM did not fit the data. Time-activity curves were more reliably estimated by the irreversible than the reversible 2TCM for 60 and 90 min as the influx rate Ki showed a lower coefficient of variation (COV, 14-24 %) than the volume of distribution VT (16-108 %). Patlak graphical analysis showed a good fit to the data for both acquisition times with a COV (12-27 %) comparable to the irreversible 2TCM. For 60 min, Logan analysis performed comparably to both irreversible models (COV 14-32 %) but showed lower sensitivity to VAChT saturation. Partial saturation of VAChT did not affect model selection when using plasma input. However, poor correlations were found between irreversible 2TCM and SUV and SUVR in partially saturated VAChT states. Test-retest reliability and intraclass correlation for SUV were good. CONCLUSION: [18F]FEOBV is best modeled using the irreversible 2TCM or Patlak graphical analysis. SUV should only be used if blood sampling is not possible.


Assuntos
Encéfalo/metabolismo , Modelos Biológicos , Piperidinas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Animais , Encéfalo/diagnóstico por imagem , Radioisótopos de Flúor , Humanos , Cinética , Ligantes , Masculino , Piperidinas/sangue , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/sangue , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Especificidade da Espécie , Distribuição Tecidual , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
3.
Mol Neurobiol ; 56(5): 3295-3312, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30117106

RESUMO

Brain-derived neurotrophic factor (BDNF) is one of the most studied neurotrophins in the healthy and diseased brain. As a result, there is a large body of evidence that associates BDNF with neuronal maintenance, neuronal survival, plasticity, and neurotransmitter regulation. Patients with psychiatric and neurodegenerative disorders often have reduced BDNF concentrations in their blood and brain. A current hypothesis suggests that these abnormal BDNF levels might be due to the chronic inflammatory state of the brain in certain disorders, as neuroinflammation is known to affect several BDNF-related signaling pathways. Activation of glia cells can induce an increase in the levels of pro- and antiinflammatory cytokines and reactive oxygen species, which can lead to the modulation of neuronal function and neurotoxicity observed in several brain pathologies. Understanding how neuroinflammation is involved in disorders of the brain, especially in the disease onset and progression, can be crucial for the development of new strategies of treatment. Despite the increasing evidence for the involvement of BDNF and neuroinflammation in brain disorders, there is scarce evidence that addresses the interaction between the neurotrophin and neuroinflammation in psychiatric and neurodegenerative diseases. This review focuses on the effect of acute and chronic inflammation on BDNF levels in the most common psychiatric and neurodegenerative disorders and aims to shed some light on the possible biological mechanisms that may influence this effect. In addition, this review will address the effect of behavior and pharmacological interventions on BDNF levels in these disorders.


Assuntos
Encefalopatias/metabolismo , Encefalopatias/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Inflamação/patologia , Envelhecimento/patologia , Animais , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...